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Initially a condition that received limited recognition and whose clinical impact was controversial, non-
alcoholic steatohepatitis (NASH) has become a leading cause of chronic liver disease. Although there are
no approved therapies, major breakthroughs, which will be reviewed here, have paved the way for future
therapeutic successes. The unmet medical need in NASH is no longer disputed, and progress in the
understanding of its pathogenesis has resulted in the identification of many pharmacological targets. Key
surrogate outcomes for therapeutic trials are now accepted by regulatory agencies, thus creating a path
for drug registration. A set of non-invasive measurements enabled early-stage trials to be conducted
expeditiously, thus providing early indications on the biological and possibly clinical actions of thera-
peutic candidates. This generated efficacy results for a number of highly promising compounds that are
now in late-stage development. Intense research aimed at further improving the assessment of histo-
logical endpoints and in developing non-invasive predictive biomarkers is underway. This will help
improve the design and feasibility of successful trials, ultimately providing patients with therapeutic
options that can change the course of the disease.
© 2022 Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.
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Once deadly, liver diseases are now to a large
extent treatable. Decisive and often spectacular
therapeutic advances over the past three decades
have forever changed the fate of patients with liver
diseases. The cure of HCV infection led to a sharp
reduction in mortality due to chronic hepatitis C,
and to a major prognostic improvement, even in
patients treated at an advanced stage. Powerful
antivirals can now control HBV replication and turn
this severe disease into a stable, chronic, condition.
Several lines of therapy for hepatocellular carci-
noma (HCC) provide prolonged remission or non-
negligible survival gains. Patients with cirrhosis
are now kept alive longer as we better understand
how to manage or prevent the most severe com-
plications of this condition. When everything else
fails, liver transplantation is the last chance for
cure, and is now associated with acceptable patient
quality of life and manageable side effects from
lifelong immunosuppression. The time has come,
in 2022, to add non-alcoholic steatohepatitis
(NASH) to this list of breakthroughs in hepatology.
Unfortunately, and largely due to the lack of
approved treatments, therapeutic progress in
NASH appears far less impressive than for other
liver diseases. Herein, we would like to argue that,
although less spectacular, the progress in the field
of NASH has been significant and probably even
decisive for future developments. We will describe
the major advances that have made it possible to
successfully test some highly promising drugs, and
Journal of
the remaining challenges that must be overcome in
the near future.

Building the scaffold for therapeutic
success
A fully recognised unmet therapeutic need
NASH is now recognised as a major cause of
cirrhosis1 and end-stage liver disease.2 The impact
on liver transplantation has been steadily
increasing3 and while Europe lags behind the US,4

it is following a similar path.5 Recognising the
mortality and morbidity burden associated with
NASH has been key in acknowledging the major
unmet clinical need it presents, especially
regarding patient identification and management.
The early view of NASH as an “incidentaloma” no
longer stands.6–8 Particularly worrisome are re-
ports that the increasing presence of non-alcoholic
fatty liver disease (NAFLD) in adolescence pre-
cipitates the occurrence of end-stage liver disease
much earlier in adulthood than classical de-
scriptions of the disease have suggested.9,10 While
the epidemiological link between NAFLD and HCC
is less well understood, two observations are cause
for concern. One is that exposure to metabolic risk
factors clearly increases the risk of HCC occur-
rence.11,12 The other is that in patients with NAFLD,
HCC can occur before the cirrhotic stage.13,14 While
in both cases the risk of HCC is low (and probably
very low in non-cirrhotic NASH), the population
attributable fraction might be considerable given
Hepatology 2022 vol. 76 j 1263–1278
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Fig. 1. Therapeutic targets in the complex pathophysiology of NASH. NASH is the result of a complex interplay of metabolic, inflammatory and fibrogenic
processes. Within the liver, hepatocytes and several of their intracellular organelles, most notably mitochondria, play an important role, alongside stellate cells
and several resident and infiltrating immune cells of different populations. Furthermore, NASH results from and impacts on an important crosstalk between the
liver, the adipose tissue, the gut (including the gut microbiome), the muscle and the pancreas. The cardiovascular system is also involved (not depicted, see
reference PMID: 2709179); Numerous mediators are involved. Drugs that have been tested in NASH or that are under development have differential targets inside
and outside the liver, but ultimately aim to improve steatohepatitis and/or fibrosis. ACC, acetyl-CoA carboxylase; DNL, de novo lipogenesis; FASN, fatty acid
synthase; FGF19, fibroblast growth factor 19; FGF21, fibroblast growth factor 21; FXR, farnesoid X receptor; GIP, glucose-dependent insulinotropic polypeptide;
GLP-1, glucagon-like peptide 1; IFNc, interferon-c; IL-, interleukin-; LD, lipid droplets; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein 1;
NEFA, non-esterified fatty acid; NKT cell, natural killer T cell; PNPLA3, patatin-like phospholipase domain-containing protein 3; RA, receptor agonist; ROS, reactive
oxygen species; siRNA, small-interfering RNA; Th17, T helper 17 cell; TGF-b, tumour growth factor-b; TNF-a, tumour necrosis factor-a. Figure adapted from PMID:
26667070 (courtesy of J. Haas) and PMID: 30888594.
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the increasing prevalence of NAFLD.15 Increased
healthcare utilisation and expenditure directed
at people with metabolic fatty liver have been
modelled16 or derived from real-world data,17,18

and show increased costs associated with NAFLD
care. Interestingly, these data have been corrobo-
rated by studies of the impact of NAFLD on hospital
admissions and death, specifically in diabetic
populations. While in non-diabetic patients,
alcohol-related liver disease was the leading cause
of hospital admission, in diabetic patients, alcohol
was the second and NAFLD the leading cause of
Journal of Hepatology 2022 vol. 76 j 12
admission.19 It is a fact that a large proportion of
patients with NAFLD do not or only occasionally
drink alcohol.20 But it is also true that the two
entities, alcohol and metabolic fatty liver often
coexist. At one extreme, in populations of heavy
drinkers, obesity clearly increases the risk of
cirrhosis.21 At the other extreme, in the general
population, the presence of metabolic risk factors
such as diabetes, dyslipidaemia, insulin resistance
or visceral obesity increase the risk of severe liver
complications,22 and this increase is often higher in
people that drink moderate amounts of alcohol.22
63–1278



Key point

Recognition of the unmet
need for treatments for
advanced NASH has helped
define a regulatory frame-
work for drug approval
which allowed many ther-
apeutic trials to be
conducted.
From pathogenesis to druggable therapeutic
targets
The acknowledgment of the potential clinical
severity of NASH paved the way for myriad path-
ogenic studies aimed at identifying druggable tar-
gets (Fig. 1). Best understood is the metabolic root
of the condition, in terms of its association
with insulin resistance, adipose tissue dysfunction,
lipid flux in the liver, de novo lipogenesis
and imbalance between energy intake and energy
expenditure. This has generated multiple drug
candidates that have been tested in patients with
NASH, including: pioglitazone23,24 or related-
insulin sensitizers,25 as well as dual or triple
peroxisome proliferator activated receptor (PPAR)
agonists26–28; glucagon-like peptide 1 (GLP-1) re-
ceptor agonists29,30 and co-agonists with glucose-
dependent insulinotropic polypeptide (GIP)31,32

or glucagon agonists,33 or even triple agonists34;
fibroblast growth factor 21 analogues35,36; thyro-
mimetics such as resmetirom37; and lipogenesis
inhibitors, such as acetyl-CoA carboxylase,38

stearoyl CoA desaturase 1,39 fatty acid synthase40

or diacylglycerol O-acyltransferase I41 inhibitors.
When such drugs induce massive weight loss, he-
patic improvement (at least of steatohepatitis) has
been documented.30 When other drugs have
additional, direct, hepatic effects, histological
improvement is to be expected.27,37 The key ques-
tion is whether improving metabolic dysfunction
and insulin sensitivity without inducing weight-
loss25,42 will be sufficient to trigger hepatic
improvement, without targeted action at the site of
liver injury. A second, highly diverse category of
NASH drugs in development aim at controlling
mechanisms of hepatic cell death and inflamma-
tion that are associated with lipotoxicity. Despite
the appeal of directly targeting mechanisms of liver
damage in steatohepatitis rather than the up-
stream cause, some of these have failed to
demonstrate clear benefits, such as chemokine
antagonists,43,44 anti-apoptotics45,46 or VAP1 (also
known as AOC3) inhibitors (NCT04897594), or
have been discontinued, such as c-Jun N-terminal
kinase inhibitors (NCT04048876). Therefore, this
approach raises questions regarding the efficacy of
selectively inhibiting one pathway of injury alone.
The overall contribution of a specific pathway may
be modest, and compensatory mechanisms can
attenuate a drug’s effect.47 Alternatively, pathway
redundancy due to cross-reactivity between re-
ceptors from the same family and alternate li-
gands48 may additionally limit the efficacy of a
given compound. It is hoped that many com-
pounds, such as farnesoid X receptor (FXR) ago-
nists, PPAR agonists and ASK1 (apoptosis signal-
regulating kinase 1) inhibitors have pluripotent
effects; the efficacy of some of these compounds
has been confirmed in phase II27,49 or III trials.50

Another category of potential NASH therapies are
antifibrotic agents, particularly those that directly
Journal of
interfere with the fibrogenic process (rather than
modulating fibrosis triggers). So far, most of these
agents have failed, including simtuzumab,51 bela-
pectin52 and emricasan.46 One possible reason for
failure is that they were tested in patients with
cirrhosis,45 who are at a very late stage in the
fibrotic process. A more general concern may be
that antifibrotic drugs with moderate – as opposed
to strong – antifibrotic action may not be sufficient
if steatohepatitis, the upstream driver of fibro-
genesis, is not being controlled simultaneously.

There has clearly been tremendous progress in
identifying the pathogenic mechanisms at play in
fibrotic steatohepatitis.53 This has led to a highly
diverse spectrum of potential NASH agents,
currently in clinical trials, in a field that is as
vibrant as the one of HCV a decade ago. Some of
the conceptual challenges for each class of agents,
as outlined, could be solved by combining agents
with pleiotropic modes of action or those that act
at different levels of the disease process. While this
holds theoretical promise, the choice of which
molecules to combine will be critical, as early re-
sults have only generated tepid enthusiasm.54,55

A regulatory framework to guide
therapeutic trials
The availability of candidate pharmacological
agents and the flurry of NASH trials have provided
the impetus for drug regulatory agencies to define
a regulatory framework for drug approval in
NASH56 (Fig. 2). Several major advances have cat-
alysed this activity. The first was the recognition of
fibrotic NASH as a serious and life-threatening
condition, thus justifying an accelerated approval
pathway.57 This allows a drug to be given condi-
tional approval, while awaiting the evidence of
clinical benefit required for definitive approval
(Fig. 3). The rationale is to ensure faster patient
access to potentially useful drugs in an area of
unmet clinical need. The second major advance
was the definition of surrogate endpoints for con-
ditional approval: regression of fibrosis or resolu-
tion of NASH. These histological changes are
achievable within a 12-18-month time-frame30,50

and are therefore feasible within a trial context.
Whether meeting these surrogate endpoints will
result in clinical benefit has been questioned,
though their use has been supported by regulatory
agencies.57 While no prospective demonstration is
available, numerous retrospective studies have
shown that fibrosis stage is associated with liver-
related mortality and liver-related events,58 while
fibrosis stage reversal can even benefit patients
with cirrhosis.59 An important observation is that
steatohepatitis itself increases the risk of liver-
related events more than steatosis alone, even in
the absence of fibrosis.60 Moreover, changes in
steatohepatitis status61 (and, more widely
speaking, in activity grade62) are positively associ-
ated with changes in fibrosis: improvement in
Hepatology 2022 vol. 76 j 1263–1278 1265
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Fig. 2. Objectives and outcomes of sequential therapeutic trials for newly developed NASH compounds. §Level of confidence in efficacy of drug based on
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PK, pharmacokinetics.

Key point

Considerable progress in
identifying pathways of
injury resulted in the dis-
covery of numerous phar-
macological targets with
several in-class compounds
for a few of them.
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fibrosis stage is often seen in patients with
improved or resolved steatohepatitis, while wors-
ening of steatohepatitis leads to worsening of
fibrosis stage. This has been shown both in studies
of natural history and pharmacological interven-
tion trials61,63 and is supported by a strong set of
experimental data.64 Thus, the chosen surrogates
seem appropriate because they are achievable and
have prognostic value. There are, however, caveats.
Requiring complete NASH resolution could be un-
necessarily strict given the aforementioned rela-
tionship between changes in activity and changes
in fibrosis. More importantly, documenting the
disappearance of steatohepatitis, as defined by the
absence of ballooned hepatocytes, can be very
challenging, as even expert pathologists have dif-
ficulty assessing hepatocyte ballooning.65 Finally,
there are differences between European and
American regulatory agencies regarding which
combination of surrogate histological endpoints
are acceptable.66
Journal of Hepatology 2022 vol. 76 j 12
A third important advance in the regulatory
framework was the definition of the clinical benefit
required for definitive approval (Fig. 3). This is
typically tested in large long-term outcome trials,
some of which are underway.67 The regulators
agreed that reducing the rate of progression to
cirrhosis should be seen as a hard-clinical outcome,
along with mortality, liver transplantation and the
occurrence of cirrhotic complications. While clin-
ical events may have a very low annual incidence,
particularly in trials including patients with stage 2
fibrosis, histological progression to cirrhosis
certainly occurs at a much higher rate, which in-
creases the probability of success. Thus, defining
efficacy endpoints that are achievable within the
timeframe of a phase III trial enabled the devel-
opment of a regulatory framework for drug
approval in NASH. However, the final decision re-
lies not only on efficacy parameters but also on a
complex assessment of the risk-benefit balance in
the wider context of competing comorbidities in
63–1278



patients with NASH. This seems reasonable given
that the chronic nature of the illness requires long-
term therapy. However, it is the authors’ opinion
that NASH drugs should aim primarily to improve
the liver disease; any added extrahepatic clinical
benefit should not be seen as mandatory.

Non-invasive read-outs for early trial success
With a recognised indication, many pharmacolog-
ical candidates ready to enter the clinic and a well-
defined registrational path, the remaining obstacle
was the selection of the best agents to be tested in
humans. This is typically studied in early-phase
trials, including proof-of concept trials. For
obvious reasons this selection could not be made
on histological grounds. The slowly evolving nature
of histological lesions, uncertainties around path-
ological assessment, and short treatment durations
rendering repetition of biopsies largely unaccept-
able for trial participants, all argue for alternative
ways of assessing potential efficacy. Moreover,
large sample sizes would be necessary, given
sampling variability and non-quantitative histo-
logical scales. Therefore, the use of non-invasive
biomarkers in early development was another
area of recent and significant progress. Imaging
studies, in particular a precise and quantitative
measurement of liver fat content by MRI, have
enabled the assessment of the anti-steatogenic ef-
fect of drugs68 (Fig. 4). In some studies, a 30%
decrease in MRI-proton-density fat fraction (PDFF)
correlated with NASH resolution.68 While this
parameter may not be predictive for all mecha-
nisms of action,69 it clearly has value for some
drugs in which the magnitude of liver fat reduction
is loosely proportional to the rate of NASH resolu-
tion.70 Corrected T1, another MRI parameter that
increases with hepatic inflammation and
fibrosis,71,72 is being increasingly used as an early
indicator of histological improvement (Fig. 5). cT1
could be predictive of clinical outcomes,73 although
more data are needed, particularly to understand
the value of short-term changes, like those seen in
early trials. Many metabolic parameters assessing
glucose homeostasis, lipid metabolism, hepatic
lipogenesis, insulin resistance and systemic
inflammation are being used to confirm the bio-
logical actions of NASH drugs in early-phase trials.
A list of biomarkers, albeit shorter, also exists for
the early assessment of hepatic anti-inflammatory
activity: aminotransferases,74 gamma glutamyl-
transferase75 and cytokeratin-18 and possibly cT1.
The anti-fibrotic effect, on the other hand, is more
difficult to measure. Despite major advances in
measuring liver stiffness through operator depen-
dent and independent technologies (such as mag-
netic resonance elastography, Fig. 4)76 and despite
the availability of many serum-based biomarkers77

there are still gaps in understanding how sensitive
and specific to change these biomarkers are and
whether early changes relate to a genuine
Journal of
antifibrotic effect. Nonetheless, the availability of
numerous and diverse biomarkers in early-phase
trials has led to tremendous progress in the tran-
sition of new drugs to the clinical trial arena over
the past decade.

Feasibility of NASH trials: a clear,
empirical demonstration
Last but not least, a major concern was that large
clinical trials requiring liver biopsy for selection
and repeat biopsies to assess efficacy would not be
feasible. Despite a high screening failure rate, at
least 5 large phase III trials are now fully enrolled.
Long-term trial retention seems to be good as well.
The demonstration of feasibility of these late-phase
NASH trials clearly removes a major roadblock to-
wards the final accessibility of NASH therapies.

Promising agents and encouraging
trial results
Over the past 15 years, many compounds have
been tested as potential therapies for NASH. While
some have failed, others are currently in develop-
ment, with new targets and approaches holding
clear promise (Fig. 1). Herein, wewill briefly review
the major advances in classes of drugs that are
already in phase III registrational trials. A more
comprehensive discussion of compounds in
development is available elsewhere.78

FXR agonists
FXR plays an important role in bile acid meta-
bolism but also in metabolic, inflammatory and
fibrogenic pathways.79 Obeticholic acid (OCA) is a
first-in-class, potent and selective FXR agonist
which initially demonstrated an insulin-sensitising
effect in patients with type 2 diabetes.80 In two
NASH studies,49,50 OCA at 25 mg daily was signifi-
cantly more likely to induce histological regression
of fibrosis than placebo. The remarkable aspect of
this result is that the efficacy seen in the smaller
phase II trial was confirmed in a large, interna-
tional, phase III trial.49 This is, for the moment, a
unique example of such consistency, as for many
other compounds, subsequent registration trials
have failed to confirm the optimistic preliminary
results from earlier trials.26,43,81–83 In the FLINT
trial,49 OCA also induced resolution of NASH at a
higher rate than placebo, which was not confirmed
at the interim analysis of the REGENERATE trial.50

However there probably is a real effect of OCA on
steatohepatitis since the drug reduces hepatocyte
ballooning and inflammation50 – the two main
histological lesions defining steatohepatitis. When
considering the whole randomised population
with NASH and fibrosis (stages 1 to 3), OCA led to
resolution of steatohepatitis as it did when using
an overall pathological definition rather than a
score-based definition.50 OCA is now being tested
in a large phase III trial of patients with NASH
cirrhosis, an indication supported by experimental
Hepatology 2022 vol. 76 j 1263–1278 1267



Key point

An FXR agonist was the
first to successfully com-
plete a phase III trial; thy-
romimetics, GLP1-receptor
agonists and other com-
pounds in late develop-
ment have demonstrated
highly promising clinical
results.
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data showing that besides their antifibrotic ef-
fect,84 FXR agonists may modulate factors that
determine complications of cirrhosis such as portal
hypertension and bacterial translocation.85–87 If
OCA does indeed induce histological improvement
in NASH, it is surprising that another FXR agonist,
tropifexor, failed to elicit histological improvement
on conventional histology.88 Other than the
obvious explanation of different lengths of therapy
(12 vs. 18 months) or statistical power, the reason
for these discordant results is unknown.

Since OCA induces side effects such as pruritus
and increases in LDL, many second generation FXR
agonists have been developed on the premise that
a non-bile acid pharmacological structure may
alleviate some of these effects.88–92 While this
seems to be true for LDL increases, pruritus is
clearly a class effect with a quite obvious dose-
response relationship. It remains to be seen if
these new FXR agonists can maintain histological
efficacy at doses that minimise the occurrence
of pruritus.

Thyromimetics
The use of thyromimetics to treat NASH derives
from both epidemiological and biological argu-
ments. Subclinical hypothyroidism has been docu-
mented in cohort studies of patients with
metabolic steatosis.93,94 In the liver, an imbalance
of deiodinase activity favours the synthesis of
inactive thyroid hormone T3 thus leading to a state
of cellular hypothyroidism.95 Thyroid hormones
have many beneficial functions, such as inducing
lipophagy and mitochondrial biogenesis which
contributes to the removal of liver fat. However, a
NASH drug would need to be highly selective for
the beta isoform of the thyroid hormone receptor
in order to avoid unwanted extrahepatic side ef-
fects. Resmetirom is the first such oral, liver-
directed THR-b1-selective agonist demonstrating
marked effects on lipid parameters.96 In a phase II
trial, resmetirom had a potent anti-steatogenic ef-
fect and improved atherogenic dyslipidaemia in
patients with NASH, while weight and glycaemic
parameters were unaffected.37 NASH resolution
was achieved in a subset of patients with control
liver biopsies, although a much larger trial would
be required to observe an ensuing effect on liver
fibrosis by conventional histology. Such a registra-
tional trial is underway (MAESTRO-NASH,
NCT03900429) as well as two other phase III trials
(NCT04951219, NCT04197479). The very good
tolerability profile, if confirmed, will certainly be a
major asset of this promising drug. Another com-
pound with liver-specific thyromimetic properties,
VK2809, is currently under investiga-
tion (NCT04173065).

Incretins and other metabolic hormones
Another highly promising approach is related to
incretins and other hormones that are mainly
Journal of Hepatology 2022 vol. 76 j 12
known to handle body energy homeostasis and
hence regulate glucose and lipid metabolism. GLP-
1 is secreted by intestinal L-cells after exposure to
nutrients. This short-lived hormone stimulates in-
sulin secretion and impacts on satiety by acting on
the central nervous system and slowing down
gastric emptying and intestinal transit.97 GLP-1
receptor agonists are indicated for obesity and
type 2 diabetes and have also demonstrated car-
diovascular98 and renal99 protective effects. Two
trials in NASH have already been completed29,30

and semaglutide, the leading compound in this
class, not only leads to metabolic improvement, but
also improves features of steatohepatitis. Despite
these positive results, two important questions
remain unanswered: the first relates to the sur-
prising lack of fibrosis reversal despite massive
weight loss, high proportion of steatohepatitis
resolution and a trial duration of 18 months,30

identical to the REGENERATE trial at the interim
analysis.50 The second one is whether all hepatic
effects are mediated through weight loss or
whether there are weight loss-independent effects.
The lack of hepatic receptors for GLP-1 suggests
that the major effects are exerted centrally and
possibly through actions on adipose tissue, as
studies of the acute effects of GLP-1 receptor ago-
nists have shown.100

Several dual or even triple agonists are in
development, associating GLP-1 with GIP agonism
(tirzepatide101) or GLP-1 with glucagon agonism
(cotadutide33,102), or even triple agonists.34 Com-
binations of GLP-1 receptor agonists and long-
acting amylin analogues103 are being tested as
well. Trials of these compounds in NASH are un-
derway and combinations of incretins seem to
induce weight loss of an even higher magnitude
than GLP-1 receptor agonists alone.104

PPAR agonists
PPARs have pleiotropic actions as critical regulators
of fatty acid metabolism, glucose metabolism,
inflammation and fibrogenesis.105 Three PPAR iso-
types have been identified – a, b/d and c106 – the
expression and actions of which differ according to
organ and intra-organ cell-type, resulting in a
complex system of nuclear receptor-mediated in-
ter-organ crosstalk.107

Mono PPARa agonists are ineffective in NASH
and selective PPARd agonists, such as seladelpar,108

are currently being developed for primary biliary
cholangitis109 and tested in NASH.110 Pioglitazone,
a PPARc agonist is associated with a broad spec-
trum of metabolic effects resulting from the
restoration of adipose tissue biology111,112 and a
decrease in chronic systemic inflammation.113,114 In
patients with NASH, these changes are associated
with improvements in liver histology.115 There are
now several phase IIb trials assessing the histo-
logical efficacy of pioglitazone, all however stop-
ping short of a robust demonstration of fibrosis
63–1278



Key point

Early proof-of-concept tri-
als have greatly benefited
from imaging and blood-
based biomarkers while
the feasibility of large, late-
stage trials, has been
empirically demonstrated.
reversal.23,24,116,117 It is important to note that a
formal demonstration of pioglitazone’s histological
efficacy in a large phase III trial is not available.
Well-known side effects of pioglitazone118 – e.g.
weight gain, fluid retention and bone loss119 with
risk of fractures – have reduced enthusiasm around
its long-term use in NASH. Several attempts to
dissociate the metabolic effects of thiazolidine-
diones from their unwanted side effects have been
undertaken,120–123 though the histological benefit
of this approach is yet to be proven.25

Possibly a more efficient attempt to mitigate the
side effects of thiazolidinediones would be the in-
duction of combined PPAR agonism using dual or
triple agonists. The most succesful story so far has
been with lanifibranor,124 a pan-PPAR agonist with
a higher potency for improving experimental NASH
than individual PPAR agonists.125 A phase IIb trial
has shown improvement across the whole range of
histological lesions, including, remarkably, a higher
proportion of patients reaching both resolution of
steatohepatitis and fibrosis improvement.27 Sar-
oglitazar, a dual a-c agonist in development for
primary biliary cholangitis126 and approved in In-
dia for NASH, has also shown promising results in
Western trials.127,128 Meanwhile, a phase III trial of
elafibranor, a dual b/d agonist also in development
for primary biliary cholangitis,129 did not confirm
the earlier positive results26 in NASH.

Lipogenesis inhibitors
De novo lipogenesis is an important source of liver
fat in patients with NAFLD130,131 especially under
dietary stress from high-fructose intake.132,133 As
mentioned, several lipogenesis inhibitors are in
development38,40,41 with one of them, aramchol,
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Journal of
already in a phase III trial (NCT04104321). Ara-
mchol is a fatty acid/bile acid conjugate which is a
partial inhibitor of hepatic steroyl-CoA desaturase-
1,134–136 a rate-limiting enzyme in the biosynthesis
of monounsaturated fatty acids137 which regulates
body adiposity, energy expenditure, fatty acid b-
oxidation in liver138 and insulin sensitivity.139 In
experimental models, aramchol improved inflam-
mation, oxidative stress and fibrosis.134,136 Phase II
studies in humans have confirmed the reduction in
liver fat39,140 and indicated histological improve-
ments in steatohepatitis and fibrosis.39

Remaining challenges and opportunities
For all the progress in understanding the clinical
burden of NASH and ensuing efforts to develop
pharmacological therapies, many grey areas
remain. Some of these may explain failures of
recent trials. Heterogeneity of the disease is prob-
ably real, but a clear way to classify patients into
separate groups that might benefit from distinct
therapeutic approaches is still elusive.141 No data
yet exist demonstrating that different genetic
polymorphisms condition response to therapy.142

However, recent studies have suggested that
among patients with NAFLD, categories of genetic
NAFLD and metabolic NAFLD have strikingly
different pathogenic mechanisms, with only the
latter relying on insulin resistance143 – one of the
main targets of drugs currently in development.
Another caveat is that we are largely unable to
predict which patients will progress clinically. Tri-
als with similar inclusion criteria and with iden-
tical follow-up reported markedly different rates of
clinical progression.51,144 This speaks to the
inability of semiquantitative histological staging
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Fig. 4. Hepatic improvement in a 63-year-old man, diagnosed in 2014 with type 2 diabetes,
obesity and hyperlipidemia, after antidiabetic therapy and successful implementation of
dietary and lifestyle changes. Improvement documented by MRI for steatosis (PDFF row) and
fibrosis (MRE row). Images courtesy of Dr. Richard Ehman and Dr. Meng Yin, Mayo Clinic,
Rochester, MN, USA. MRE, magnetic resonance elastography; PDFF, proton-density fat fraction.
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systems to optimally stratify patients at risk of
disease progression. Some reports suggest that the
area of fibrosis (as opposed to the fibrosis stage)
may be a better indicator of future liver-related
events.144 Recent developments in the biomarker
field could compensate for the lack of prognostic
information provided by liver biopsy.

Innovations in the assessment of NAFLD in
clinical trials and practice
The development of knowledge regarding NAFLD
has been anchored on histological assessment of
liver biopsy specimens. However, this approach has
many limitations that render it unsuitable for
translation into routine clinical practice.145 Perhaps
the greatest limitation is the relative imprecision
secondary to sampling variability, both intra- and
inter-observer variability, in the assessment of
histological findings that even limit their utility as
research tools to establish the value of specific
therapeutics.62 These limitations have prompted
intense efforts to develop and validate non-
invasive tests (NITs) both for use in clinical trials
and for routine clinical management of NAFLD.

Improving histological assessment of NASH in
clinical trials
The limitations of subjective histological assess-
ment using conventional scoring systems have
spurred efforts to improve the repeatability and
reliability of histological assessment of therapeutic
benefits in clinical trials. These efforts have focused
on both unique imaging methodologies and
machine-learning approaches to enhance the pre-
cision and reproducibility of results. However, none
Journal of Hepatology 2022 vol. 76 j 12
of them are approved for this purpose and their use
remains experimental.

One approach involved machine-learning-based
identification of steatosis, ballooning, inflamma-
tion and fibrosis from annotated histological sec-
tions using conventional scoring systems.54 The
resulting ability to diagnose steatohepatitis was
comparable to reading by well-trained hepato-pa-
thologists. The fibrosis scores used by this system
also correlated well with conventional staging. The
limitations of these approaches remain the use of
conventional scoring systems with their own
drawbacks and the training of machines on find-
ings annotated by conventional systems. Never-
theless, this approach is being applied in several
trials to assist pathologists and enhance the
reproducibility of results.

Second-harmonic generated images on un-
stained paraffin-embedded sections have been
used to measure quantifiable collagen fibrillar pa-
rameters (qFP)146 and develop a continuous
fibrosis staging system with a vastly expanded
dynamic range.147 This has been adapted for com-
mercial use and a qFP-based score for fibrosis has
been validated in independent cohorts with
NASH.148 This method further varies from conven-
tional reading by providing the score for central
vein, peri-central (zone III), zone II sinusoidal,
periportal (zone I) and portal areas (Fig. 6).
Recently, additional parameters including septal
areas, septal width and septal cellularity have been
added to the evaluation. In a recently concluded
clinical trial of tropifexor for NASH, differential
movement of fibrosis was noted in different re-
gions following therapy.149 Further features of
progressive vs. regressive fibrosis were identified
which allowed for re-allocation of many in-
dividuals who did not have a full stage change in
fibrosis to progressed and regressed categories.
Other innovations using high-resolution scanning
of conventionally stained slides have also been
developed, with the advantage that the same his-
tological section as the one reviewed by the
pathologist undergoes machine-learning analysis
of collagen properties or image-analysis quantifi-
cation of histological activity (Fig. 7). These tools
will enable early detection of changes in fibrosis
and may be useful in phase II trials, where go-no go
decisions have to be taken to move to more
advanced trials.

Other histological biomarkers are also in
development. In a landmark study, a group of pa-
thologists annotated all ballooned cells in a set of
liver biopsies.65 While the majority identified bi-
opsies with ballooned cells, there was only one cell
that was identified by all pathologists to be bal-
looned. This has important implications for the
field, which include the use of machine-learning-
based identification of ballooned cells150 as an aid
to conventional histological reading. It also raises
the potential for quantitative assessment of
63–1278
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Fig. 5. Changes in Liver cT1 after a 3 month very low-calorie diet (800 calories per day)
intervention in a patient with fibrotic NASH. Maps produced using LiverMultiscanTM. The
inserts show median cT1 values. Images courtesy of Dr Michael Pavlides and Dr Dimitrios
Koutoukidis, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United
Kingdom. NASH, non-alcoholic steatohepatitis.

Key point

Further validation of non-
invasive diagnoses is ex-
pected to select patients for
therapy, measure treat-
ment effect in trials and
guide future management
of NASH in clinical practice.
ballooning instead of the current scoring system
with its limited dynamic range. If validated, this
may allow for the assessment of ballooning along
an expanded dynamic range. Similar approaches to
quantify steatosis are also being developed.151

Sonic hedgehog staining is also in development
as an independent histological biomarker linking
activity to fibrosis. Overall, this remains a very
active area of research and is likely to evolve over
the next few years.

Use of NITs in clinical trials
The specific clinical purpose served by a NIT can
include its use as a risk factor and as a diagnostic,
prognostic, disease monitoring, predictive or
treatment response assessment tool.152 The evi-
dence base required to support the full regulatory
approval of a NIT for a specific intended use is thus
quite substantial and unfortunately most NITs do
not yet have the evidence base to support their
qualification to completely replace histology for
the assessment of therapeutic benefits in clinical
trials. Two major efforts, the LITMUS and the
NIMBLE initiatives153,154 are currently attempting
to bridge these data gaps and are expected to lead
to qualification of both imaging and circulating
biomarkers for NAFLD.

Despite the data gaps in the field, substantial
evidence has also been generated regarding the use
of NITs in NAFLD. From a diagnostic perspective,
the key elements needed for clinical decision
making include an assessment of disease activity
and fibrosis. Steatosis, hepatocellular injury and
ballooning have been proposed as markers of ac-
tivity 61,155; however, the lack of correlations be-
tween these markers and mortality have led to
development of alternate paradigms where stea-
tosis severity is considered separately from
inflammation and ballooning injury.156 MRI-PDFF
has emerged as a powerful and well-validated
measure of total hepatic triglyceride content
which correlates with histological scoring of stea-
tosis severity (Fig. 4).157 The continuous attenua-
tion parameter (CAP) obtained during vibration-
controlled transient elastography (VCTE) repre-
sents another commonly available tool to evaluate
the presence of pathological steatosis158 but does
not distinguish the grades of steatosis with great
accuracy.159 A new approach to the measurement
of CAP, the continuous CAP measure has been
introduced and high-quality data are awaited
to see if this can provide better quantification of
the steatosis burden. Other measures, such as the
fatty liver index,160 lack the sensitivity and speci-
ficity to be useful in the clinical trial setting.161

Aspartate aminotransferase and alanine amino-
transferase are conventional measures of liver
injury but do not correlate well with ballooning or
lobular inflammation.

Several simple laboratory-aids for assessment of
fibrosis severity exist. Of these, fibrosis-4 (FIB-4),
Journal of
aspartate aminotransferase-to-platelet ratio index
(APRI) and NAFLD fibrosis score are the most
extensively validated tools. FIB-4 and the APRI
were developed as tools to identify advanced
fibrosis (stage 3 or higher); however, it is known
that NASH with stage 2 fibrosis is associated with a
higher rate of liver-related outcomes and
death.58,162 It is therefore relevant to consider the
use of NITs to identify those with NASH, high ac-
tivity and stage 2 or higher fibrosis, which is also
referred to as “at-risk” NASH.154

The NIS-4 test, based on circulating levels of
mir34a, alpha-2 macroglobulin, haemoglobin A1C
and YKL-40, has been validated both in those with
and without type 2 diabetes to identify those with
“at-risk” NASH within a population of patients with
risk factors for NASH.163 In recent studies it also
outperformed both alanine aminotransferase for
the diagnosis of NASH and FIB-4 for the identifi-
cation of stage 2 or higher fibrosis.164 Fibrometer-
VCTE is another NIT which utilises the liver stiff-
ness measurement from VCTE and laboratory
markers for its generation; it is superior to FIB-4 for
the diagnosis of fibrosis stage 2 or greater.164 The
enhanced liver fibrosis test (ELF test) also has
similar performance.164 This raises the possibility
that, in the future, the “to be treated” population of
patients for clinical trials can be identified using
these tools, with or without MRI-PDFF or CAP.

A key goal in the design of trial populations is to
identify those at risk of outcomes so that the
impact of therapy is identifiable quickly. This re-
quires measures of risk assessment or prognosis.
Liver histology is a surrogate endpoint where the
fibrosis stage is the best correlate of clinical out-
comes.58,162 The ELF test has recently been
approved as a prognostic biomarker, with those
with an ELF value >11.3 considered to be at high
risk of liver-related outcomes. Population-based
studies have also shown a link between the FIB-4
score and mortality and liver outcomes.165 MRI-
PDFF and liver stiffness measurement by VCTE
have also been shown to provide prognostic
Hepatology 2022 vol. 76 j 1263–1278 1271
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information in NAFLD.166,167 These tools, in
conjunction with the diagnostic tests mentioned
earlier, can be used to identify the population of
interest in clinical trials. Specifically, the current
data make it feasible to identify those with “at-
risk” NASH and those with NASH and advanced
fibrosis or cirrhosis for specifically targeted ther-
apy.168 It is anticipated that once these NITs are
validated for these specific purposes, the field will
pivot to their use to define trial populations
in NASH.

Predictive biomarkers are those that identify
individuals who will either respond to a specific
treatment or not. These are critically important in
order to avoid unnecessary exposure to drugs in
those who are unlikely to benefit and to match
patients with drugs that will work for them. Un-
fortunately, this remains a relatively under-
developed area and a major unmet need in
the field.

Another key need for NITs is to identify thera-
peutic response. While many NITs have been
assessed as static markers of fibrosis burden, their
sensitivity to change and the precise relationship of
changes in biomarker values to changes in fibrosis
stage is not established for almost any of them. The
FIB-4 index has been shown to be sensitive to
change in both directions but is not sufficiently
sensitive to be clinically useful for this purpose.169

The analysis of the REGENERATE phase III trial of
OCA contributed key data in the effort to assess
drug efficacy through non-invasive methods rather
than through liver biopsy.170 First, it reproduced
the demonstration of the efficacy of the active drug
over placebo by documenting improvements in
tion/two-photon excitation fluorescence imaging of unstaine
is and a lesser reduction in periportal fibrosis despite identical
ntervention. This method enables the specific detection of fibrou
al veins appears in yellow and perisinusoidal collagen in turquois
tis Clinical Research Network.
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NITs in the active arm but not in the placebo arm.
Second, it showed that NIT changes tracked histo-
logical changes since histological responders were
also NIT responders. Also, in a recent study of over
1,000 patients with cirrhosis who had liver bi-
opsies a year apart, a subset was noted to have
regression of fibrosis stage.59 This was associated
with concomitant improvement in several NITs and
a decrease in risk of clinical outcomes. Additional
data are now needed to further confirm that
changes in a NIT not only correlate with changes in
activity and fibrosis, depending on their use in a
trial setting, but also with clinical outcomes in the
long-term. Such data will be needed across multi-
ple mechanisms of action to establish a surrogate
endpoint for clinical trials that will allow for
accelerated trials in a population defined non-
invasively based on the diagnostic and prognostic
utility of specific NITs.

Adequacy of success in clinical trials vs.
its effectiveness
It is well known that the effectiveness of drugs is
often poorer than the efficacy noted in clinical
trials. Many factors contribute to this including the
treatment of patients who were excluded from the
trial, varying comorbidity profiles, compliance and
the potential for drug-drug interactions not
obvious in trial settings. There is an ethical and
regulatory imperative to generate real-world data
on the effectiveness of drugs approved based on
the evidence generated in strictly controlled trial
settings. Several real-world cohorts are currently
being developed for this purpose. There have been
remarkable advances in how controlled data can be
d slides by dual-photon microscope. Imaging shows a major
fibrosis staging by the NASH CRN classification (stage 2), (A)
s collagen disposition (green) in hepatic parenchyma: collagen
e. Image courtesy of Dr. Dean Tai, HistoIndex, Singapore. NASH
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Fig. 7. Topological probability heatmaps. Topological probability heatmaps (machine-learning
predictive model) of inflammation (A) and hepatocyte ballooning (B). Probability thresholds
(75% here) are used to accept features, which are then classified and quantified for size, density,
morphometry. The related parameters are combined to form continuous severity scores.
(FibroNestTM image analysis platform on hematoxylin and eosin stained and digitized slides.
Image courtesy of Dr Mathieu Petitjean, PharmaNest, Princeton, NJ, USA) NASH, non-
alcoholic steatohepatitis.
collected in real-world settings including point of
care virtual trials and efficacy-to-effectiveness trial
designs.171 There are current unmet needs in this
space for NASH-specific designs to both assess the
benefits and harms of treatment in real-world
settings, but also to evaluate these in the context
of the impact of treatments on associated comor-
bidities which share common biology linked to the
insulin-resistant state.172

The future of therapeutics in NASH
Given the complexity of NASH pathogenesis, there
is great interest in the development of combination
therapies targeting different aspects of the disease.
As this area of research develops, several elements
will need to be considered.

First, increasing evidence of the benefits of GLP-
1 agonists and the SGLT2 (also known as SLC5A2)
inhibitor class on those with type 2 diabetes and
cardiovascular and renal disease means that they
are likely to be background therapy for many pa-
tients with NASH, regardless of the status of their
liver disease. Furthermore, in those with high dis-
ease activity and fibrosis stage, i.e. the population
most at risk, such therapies may benefit both ac-
tivity and fibrosis. It is however likely that there
will be a greater benefit on one than on the other
given the heterogeneity of disease biology from
individual to individual and the varying efficacy of
individual drugs on activity and fibrosis. The im-
plications for long-term disease evolutionwill need
to be considered in this setting and specific ap-
proaches, such as disease remission induction and
maintenance strategies vs. intermittent cycled
therapy vs. other approaches, will be needed for
successful development of combination strategies.

Finally, given the biological complexity and
clinical heterogeneity of the disease and its
comorbidities, in an ideal world, identification of
the precise drivers of disease would aid the
development of targeted therapeutics. Such preci-
sion medicine approaches will require large
numbers of well phenotyped and genotyped co-
horts. The use of polygenic risk scores to identify
individuals with specific risk characteristics and
pathways of liver injury will be important for
successful implementation of precision medicine
approaches. Recent data from the Million Veterans
Program173 represent important steps in this di-
rection but only provide insights on the develop-
ment of fatty liver.174 There is a major unmet need
to integrate genomic, phenomic and transcriptomic
data to move the field towards specifically targeted
therapeutics which will benefit the largest number
of patients with NASH.
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